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INTRODUCTION

* Research objectives: To perform probabilistic
model calibration and quantify the uncertainty
over the sparse data;

* A set of crack data obtained via a 4-point bending
test on a Carbon-Steel nuclear piping [1];

* Test was conducted over 40000 periodic stress
cycles, Neycies;

* Each stress cycle has stress range: AP =
156 MPa;

* 24 readings of crack depth, z, obtained for 24
distinct Neycres-
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PROBLEM

Crack growth assumed to follow Paris-Erdogan

Law [2]:
dz

=C (AK)™ (1)

chycles

This can be linearized to:
log[ 4z ] = m - log[AK] + log[C] (2)

where:

chycles

AK = (ﬁ)g AP-JTZ (3)
METHODOLOGY

Bayesian regression technique for uncertainty
guantification over the sparse data in log-space;

Epistemic parameters to be inferred: 60 =
{log[C],m};

o Prior PDF: 2D Uniform distribution with
correlation coefficient of -0.999 defined
by a Gaussian Copula. log[C] has bounds
[—50, 0] while m has bounds [0, 10];

o Likelihood function is Gaussian with
standard deviation: ¢ = 0.0191;

o Model used for Bayesian updating is
defined by Eq. (2) ;

o 1000 samples generated via TMCMC [3].

Compare the results with 2"-order polynomial
Interval Predictor Model [4] in the original real
space.
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CONCLUSION

Bayesian regression / model updating results showed
that all possible trajectories lie within IPM;

Bayesian model updating results yield tighter bounds
and this is attributed to the choice of ¢ in the Likelihood
function;

Further works: To compare the results from Bayesian
regression using different models of AK and to also
include Kriging as a form of validation.
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