Ab-initio phonon and electron transport in nuclear materials

- Focus on UB₂ [1] (potential fuel), P6/mmm anisotropic structure
- Higher U density than UO₂

PRIFYSGOL BANGOR

l.evitts@bangor.ac.uk

[1] J. Nucl. Mater, 528 (2020)

L.J. Evitts ^{a, *}, S.C. Middleburgh ^a, E. Kardoulaki ^b, I. Ipatova ^a, M.J.D. Rushton ^a, W.E. Lee ^{a, c}

^a Nuclear Futures Institute, Bangor University, Bangor, Gwynedd, LL57 2DG, UK ^b Los Alamos National Laboratory, Los Alamos, NM, 87545, USA ^c Institute for Security Science and Technology, Imperial College London, London, SW7 2AB, UK

Phonons – breakdown of lattice thermal conductivity

Coupling phonons and electrons

$$\kappa_l = \frac{1}{3} \cdot C_v \cdot v_M^2 \cdot \tau_p$$

$$\frac{1}{\tau_p} = \frac{1}{\tau_{ph}} + \frac{1}{\tau_{def}} + \frac{1}{\tau_{sur}} + \frac{1}{\tau_{spin}} + \frac{1}{\tau_{e-1}}$$

- Typically, only ph-ph scattering calculated
- ph-sur scattering estimated from typical grain size
- (Discussion of ph-isotope in paper)
- ph-e- can be calculated from coupling ab-initio phonon and electron transport calculations (electron-phonon Wannierization)

Electrons

- BoltzTraP give properties as fn of $\boldsymbol{\sigma}$
- Maximally localized Wannier fn:
- ρ = 9.16 μΩ cm at RT (expt ~10 μΩ cm [1])

$$\kappa_e^{imp} = LT/\rho$$

 $\frac{1}{\kappa_e} = \frac{1}{\kappa_e} + \frac{1}$

• K^{ph}_e calc. from integrals of spectral functions, found to be negligible

Total K dominated by K_e

