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A lot has been done on the code validation as evidenced by the
conclusions of the NUGENIA/CORSOAR Project (Haste et al., 2018)

B OECD/CSNI TMI-2 (2015) exercise and benchmark OECD/CSNI/ISP-46 (2013) on
Phébus-FPT1 and NUGENIA/SARNET/QUENCH-11 have led to an evaluation the
guality of the codes for PWR transients

B Results are in good agreement, with the calculated states of the core and the
primary circuit being very similar; the main discrepancies concern the void
fraction in the core, but these are considered to be acceptable

B For the degradation phase, up to core reflooding, results show a rather good
agreement between the different codes for integral parameters such as total H,
production and mass of molten materials

B The variability in these results is much lower than the results obtained in a
benchmark exercise performed 25 years ago, showing a significant improvement
of the codes in the last two decades



But some work remains to be done ...
B OECD/BSAF benchmark on Fukushima Daiichi NPP Unit 1(Nagase et al.,2016)
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B Codes diverge as soon as the core loses its geometry, differences in modelling
lead to significant differences for

B H, (from 300 to 1000 kg)
B Max. temperature reached in the vessel (from 2000° to 3000°C)
B %.solid/liquid



Transition from the intact to the degraded geometries : a grey zone

A Temperature (K)
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Myths or reality about this grey zone

B Relocation mode
m solid debris slumping/progressive relocation of melt ?
®m whatis the impact of relocation mode on the late phase of the accident ?

B Relocation temperature

® many experimental observations in tests of PWR geometries tend to indicate that
temperature of melt relocation was much lower that UO,-ZrO, eutectics (2800 K),
about 2500-2600 K

® some codes use this reduced temperature as input parameter in reactor calculations

® isitjustified whatever the transient ?

® does this reduction correspond to “not modelled” interactions in codes ?

B BWR/PWR the same reality ?



Temperature in °C

Relocation mode : solid slumping/progressive? (1/2)

B Highly dependent on the criterion of cladding failure (Veshchunov et al.,
2013)

B Most widely assumptions used in the codes = failure at a given
temperature (between 2100 and 2300°C) or for a given ZrO, thickness

B Not consistent with separate effect tests (Hofmann et al., 1999, EC CIT
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Relocation mode : solid
slumping/progressive? (2/2)

B Earlier failure, thin oxide layer (140 mm) B Later failure, thick oxide layer (425 mm)

B Higher probability of local non-fully B Less probability of formation of local non-fully
oxidised molten pools oxidised pools

—> More probable progressive relocation - More probable debris bed slumping



Impact of relocation mode on the late phase (1/2) : 2 main

situations

BV

ogressive rélocation

B Molten materials dominant in the lower
plenum

B By-pass of steam,
B Less exchange and oxidation

B Higher temperatures reached in the pool

- Relocation mode rather considered in ASTEC and
MAAP

o]

Wd formation

B Solid materials dominant

B Better exchange with steam
through debris bed porosity

B Stronger debris oxidation

B Lower temperatures in the debris
bed

- Relocation mode rather considered in MELCOR



Impact of relocation mode on the late phase (2/2) : Fukushima Daichi U1

MELCOR ASTEC
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Temperature of melt relocation 2500 K- acceptable but why ?
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Temperature of melt relocation 2500 K- OK but why ? (1/2)

B Impact of metallic control rod materials (evoked in CORA tests, Hofmann
et al., 1994)

®m Phebus FP : no significant action of Ag-Cd-In and SS on fuel degradation,
agrees with TMI-2 observations

®m No thermodynamic reason that metallic melts reduce UO2 and ZrO2

1989)
® Canreduce very significantly the UO2/ZrO2 melting points
®m PWR second order effect (as shown in Phébus FP)
®m May be different in BWR where steel amount is higher
B Impact of burn-up (mentioned for VERCORS, Pontillon et al, 2005)
® No difference between Phebus FPTO (fresh fuel) and FPT1 (32 GW;j/tU)

® No real change of chemistry with FP regarding the degradation



Temperature of melt relocation 2500 K- acceptable but why ? (2/2)
B Impact of oxygen potential (evoked in VERCORS)
® No structural materials (as stainless steel or CR materials) in the VERCORS tests
® No metallic zircaloy since the cladding is fully oxidized before reaching high T

®m Melting temperature of UO2 can be strongly reduced as function of the oxygen
potential

B Impact of metallic melt produced after the cladding failure —

® Amount of sub-oxidised melts increased in FPTO vs FPT2

®m Lower temperature for fuel rod relocation in FPTO (2570 K) vs FPT2 (2650 K)

B Sowhattodo?

® No reason to use this temperature of 2500 K as an input parameter in the reactor
calculations

® Cladding failure mechanism to be better modelled

® Thermochemistry of O-U-Zr system (NUCLEA database) must be taken into
account in the degradation models



Application to TMI-2 accident (Drai et al. 2018)-ASTEC calculation-Sensitivity
study to the melting temperature of UO2 on the H2 production
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B Significant impact of melting temperature on the H2 production and the
degradation (not shown)

B With higher T, fuel rods and claddings keep their ‘intact’ geometry
longer, staying available for oxidation,



PWR/BWR

Most of results obtained in two last decades were for PWR geometry

For BWR, interactions during the early phase can promote the degradation,
not the case for PWR

B,O; formed from B,C oxidation can spread towards surrounding fuels rods
Eutectic reactions with UO, and ZrO, at low temperatures (EC ENTHALPY)
Observed in CORA W2 and Phebus FPT3
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Conclusions —Remaining open questions (1/2)
W Difference in corium melt relocation highly impacts final condition of debris

and structure materials, which includes redistribution/mechanical properties
of debris, redistribution of major constituents in debris, degree of oxidation,

degree of failure of structure material, etc.

B 2 schematic core degradation schemes.
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Figure provided by M. Kurata (JAEA)



Conclusions —Remaining open questions (2/2)

B What are the relocation processes of degraded materials before fuel
melting ?

What is the gas permeability through the degraded materials ?

What the mechanical/thermal resistance of the crust supporting the
molten pool ?

B What is the failure mode of the core support structure (strongly
impacts the amount of stainless steel inside the molten pool ?

B Whatis the role of the grids in the relocation process ?



Relevant & unique phenomena for near term ATF under severe accident conditions &
available experimental and analytic studies

ﬂ;zfg SHORT OVERVIEW
[ Cladding : FeCrAl, SiC and Cr-coated zirconium alloys
[ Fuel : Cr,05-doped UO, fuel

[ Evaluation of the impact of these new materials on

— Oxidation SiC, FeCrAl, Cr-coated Zr
— Fission product release and transport Cr,0,-doped UO, fuel

— Interaction cladding/fuel SiC, FeCrAl, Cr-coated Zr
— Molten pool behavior (in- and ex-vessel) Cr-coated Zr

7 LIMITED AMOUNT OF EXPERIMENTAL DATA FOR SA CONDITIONS

y
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IRSHN

Oxidation kinetics

— Parabolic oxidation

— Faster kinetics when ZrO, is cubic, however ZrO, melts only at very high temperature

Physico-chemical interaction with fuel

— Small reduction of the melting temperature of the UO,-ZrO, mixtures in comparison with fuel

Improvement of oxidation resistance, hydrogen uptake, mechanical properties up to 1300°C (in comparison with Zry-4)
Oxidation behaviour (Steinbruck et al., 2019) apparently worse than for non-coated cladding at 1450°C

Interaction with UO, fuel : no expected difference with reference cladding material (numerous data from Hofmann,
Olander, Hayward ...)

Cr coating vaporization under CrO,(OH), or CrO,0H



ATF claddings (2/3)

1 FECRAL CLADDING
}4"\/‘ —\
| Very few data above the melting point of the cladding = expert judgement based on Fe

| Oxidation kinetics of Fe above 1600°C
— FeOxis molten
— Catastrophic oxidation (molten oxides) (P. Kosfstad 1988) only limited by steam diffusion in gas (steam starvation)

— Heat of reaction by cladding length lower than for Zry-4

| Crand Al vaporization under CrO,(OH), or CrO,0H and Al(OH,) (resp.)

| Physico-chemical interaction with fuel
— Strong reduction of the melting temperature of UO, fuel by interaction with FeO (Bechta et al., 2007)
— Possible intergranular attack leading to wet sand relocation (TMI-2, Strain et al. 1989)

L . . . . FeCrAl-ODS cladding  UO, pellet Oxidized cladding U0, pellet
— Preliminary tests from Sakamoto et al. 2019, in agreement with this assumption

Before heating test After heating test
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ATF claddings (3/3)

4> SIC CLADDING

w""‘t ’

| Oxidation kinetics of SiC below 1700°C

— Oxidation by steam, more than 2.5 times more explosive gases (CO+H,) produced per cladding length unit at thermodynamic

equilibrium, assuming same thickness of Zry and SiC

| Oxidation kinetics of SiC above 1700°C

— Molten SiO, looses its protective effect
— Catastrophic oxidation (molten oxides) (P. Kosfstad 1988), only limited by steam diffusion in gas (steam starvation)

— Vaporisation of SiO, into Si(OH,) or SiO(OH,)

| Physico-chemical interaction with fuel

— Strong reduction of the melting temperature of UO, fuel by interaction with SiO, (Ball et al. 1993)
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Appendix:
Impact of ATF on FP release :

- Cr,0,-doped UO,
- Effect of aerosols from cladding
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Expected effects on microstructure and impact on FP release

— grain already "big” at t,, grain growth rather expected as a second-order effect.

-> greater ease for percolating gases since the "grain joint" surface of percolation is reduced.
— formation of the RIM zone: expected decrease in the concentrations of interstitial uranium in the irradiation cascade
(Guo et al. 2017)

- should delay the appearance of the RIM zone compared to undoped UO,

Expected effects on FP diffusion coefficients

— Uranium vacancies = stable positions in UO, for most of the FP ( Cs, Kr, Xe, Ba, Ce, Ru, Rb, Zr, Y) (Grimes et al. 1991, Crocombette
2002, Busker et al. 2000, Petit et al. 1999, Brillant et al. 2008)
- substitutional mechanism for FP diffusion usually assumed
— Cr doping eases the formation of U vacancies (Guo et al., 2017)
- could contribute to an increase of the FP diffusion coefficient (still speculative, uranium vacancy migration energies

remain to be determined)

IRSHN



Expected effects on fuel and FP chemistry
— Cs may form stable chromates in doped fuel
— Competition with chromium uranate (in hyperstoichiometric fuel UO,,,) formed from Cr3* and U>* (Cooper et al. 2013)

UO,+1/2 Cr,0,+1/4 0,= UCrO,

— FP partition between UO,,, and chromium uranate estimated by ab-initio calculations (Cooper et al. 2013)
* Small tetravalent FPs (Mo*, Zr#*, Ru**) preferentially in CrUO,// bigger ones (Ce**) and actinides (Am**, Pu**, Np**) in UO,,,
= Trivalent FPs (lanthanides) are calculated to remain in UO,,,
= Divalent FPs (Sr?*, Ba%*) are calculated to remain in UO,,,

- impact on the Cs release through the modification of the Mo chemistry

| Key points for SA codes to be developed

— Mo and Cs chemistry modified by chromium presence and consequence on iodine partition (aerosol/gas) and transport

IRSHN



FP transport in the RCS

Peig CR- COATED ZR
=
[ Crvaporization under CrO,(OH), or CrO,0OH
[ Impact on cesium chemistry (Cs chromates) and then on iodine one
i SIC
oL
[ SiO, vaporization under Si(OH,) or SiO(OH,) (high steam flow rate)

[ Impact on cesium chemistry (Cs silicates) and then on iodine one

> FECRAL
=

| Crand Al vaporization under CrO,(OH), or CrO,0H and Al(OH,) (resp.)

[ Impact on cesium chemistry (Cs chromates) and then on iodine one
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