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Ray-effects

Any non-rotational invariant
(NRI) angular discretisation
gives ray-effects (Sn, FEM,

etc)

Scalar flux
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This is the pre-asymptotic
region of convergence

Want to solve problems with
small solid angle (1x 107 sr.)
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Angular adaptivity

Often don't need high
resolution everywhere in
space/energy

Error metric must:

Be able to refine in the
pre-asymptotic regime to
“resolve” ray-effects

Be able to refine in asymptotic
regime to capture real
discontinuities

Be locally refineable

Be scalably refineable




Haar wavelets

Hierarchical basis on each octant P? DG
Hence equivalent to P® DG FEM in angle

Can do arbritary anisotropic refinement in O(n)
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Error metrics

Could use regular error metric

Rely on wavelet properties
(norm-equiv and cancellation)

Hence refine where flux is big
and discontinuous

Figure: The red region is a source, the

region is pure absorber (1 cm™1),
with the white, green and red regions
pure vacuum.



Regular adapt + load balance
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Goal-based error metric

Chose a goal to reduce error in (e.g., avg flux in region)
Solve forward and adjoint problems - ¥ and ¥*
Form forward and adjoint residuals - Rand R’

Dual-weighted residual method gives:

~ max{|¥ ©R'|,|¥* © R|} Npor
T )

Then trigger refinement where e is big



Goal-based adaptivity and ray-effects

Rely on being able to “see” the detector in pre-asymptotic

Error metric is zero - no adapt!

Easy to not bump into this
’
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Figure: Source/detctor problem in a vacuum




“Fake” robustness

Scalar flux

Scalar flux
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Figure: H; solution on coarse (3000 elements) and fine mesh (265k elements)

Detector response on coarse mesh from numerical diffusion
Refined spatial mesh gives zero response

“Fake” response also from aligned detector, or scatter path



Robust error metric

Let's try and build a cheap surrogate solution without ray-effects
Use this to trigger refinement in pre-asymptotic

Can't use diffusion equation as isotropic in angle

Can't use different quadrature/NRI disc.

Could add angular diffusion to NRI but how to add
“enough” / “not too much”

P,, is rotationally invariant but poorly conditioned due to Gibbs
with streaming



Robustness with FP,,

Filtered P,, equivalent to adding angular diffusion

Converges to true transport solution

No-ray effects and constant condition number with pure streaming
But O(n?) because of BCs

(- -
Figure: P,, solution Figure: Filtered P,, solution
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Asymptotic regimes
Exploit pre-asymptotic regime is different for FP,, and NRI disc.
Use low-order FP,, O(n?) solution to bootstrap our error metric

Then scalable O(n) Haar adapt takes over
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Figure: Pure vacuum source/detector Figure: o uniform LS P? FEM, A\ is
gure: Fu uu . uniform FP,, with ¥ = 0.1.




Simple heuristic

Figure: FP1 vs Haar solution
Shaded black where > 10
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Solve Haar forward/adjoint,
then FP,, forward/adjoint

Use FP,, solution in metric if
10 times bigger than Haar

Then refine Haars and repeat
In limit of FP,, refined,
heuristic reduced and 7

reduced

Goal-based Haar adapt
converges to true solution



Duct problem - Goal based
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Figure: [ is fixed refined Haars, ® goal-based Haar adapts, ¢ uniform LS P°
FEM, A is uniform FP,, with ¥ = 0.1.



Duct problem - Goal based
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Figure: [ is fixed refined Haars, ® goal-based Haar adapts, ¢ uniform LS P°
FEM, A is uniform FP,, with ¥ = 0.1.



Duct problem - Goal based

Figure: FP2; solution at midpoint Figure: Haar adapt after 5 steps

Figure: Haar adapt after 10 steps



3D scatter box

Figure: 10x10x6cm box, all regions vacuum except blue pure scattering
regions (lcm™1), red region is source, green region is detector.



3D scatter box - Goal based
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Figure: (I is fixed refined Haars, ® goal-based Haar adapts, x non-robust
Haar adapt, ¢ uniform LS P® FEM, A is uniform FP,, with ¥y = 0.1.



3D scatter box - Goal based
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Figure: (I is fixed refined Haars, ® goal-based Haar adapts, x non-robust
Haar adapt, ¢ uniform LS P® FEM, A is uniform FP,, with ¥y = 0.1.



3D scatter box - Goal based
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Figure: Adapted angular flux in direct path between source/detector.



Conclusions

If you're doing goal-based
space or angle adapts

Be careful about the
pre-asymptotic regime with
streaming

Using FP,, surrogate solution
brings robustness

If you aren’t robust in all
parameter regimes, why
bother?

Hopefully now robust for
combined space + angle
adapts




Thanks for listening
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Dogleg problem - Goal based
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Figure: No. angles after 9 adapt steps

Figure: Flux near source and duct



Dogleg problem - Goal based
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FIgU re. A is uniform P,,, the [ is uniform Haars, * regular adapt Haars, () goal-based linear wavelets [1], ®
goal-based Haar adapts, ¢ uniform LS PO FEM



Dogleg problem - Goal based
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Dogleg problem - Goal based

Adapt step: 1 2 3 4 5
Cum. runtime (us) per final DOF: 57 130 144 134 121
Peak memory use: 2546 199.2 1559 053 ©66.4
Adapt step: 6 7 8 9 10
Cum. runtime (us) per final DOF: 972 94.6 102 119 136
Peak memory use: 488 352 31.3 30.72 30.67

Table: Time and peak memory in copies of adapted ang. flux

Linear growth in memory consumption per adapted DOF
Close to linear growth in runtime per adapted DOF
We have scalability in this problem - min solid angle 5x 107 sr

Uniform DG LS S7gy sweep would need 136 ns solve time per DOF



Ray-effect free

We need something to “bootstrap” the angle adapt

Or to compute an importance map/weight window in angle
Diffusion approximation won't work - Constant in angle
Can't use anything with ray-effects

P, doesn't have ray effects, but Gibbs

Filtered P,, removes Gibbs, reduces convg. rate in smooth
problems

Still converges to real transport solution




Filtered P,,

where o(n) is a filter function and s is a strength.
Rotationally-invariant

(Close to) constant condition number with angular refinement
Equivalent to a forward-peaked scattering operator

Filter acts like angular “diffusion”

Still O(n?) in angle size (BCs, jump terms)



http://www.sciencedirect.com/science/article/pii/S0021999113001125

Filtered P,,

Compute (low-order but ray-effect free) FP,, solution

Use this to compute error metric/importance map

Then scalable adapt or Monte-Carlo takes over and resolves to
high accuracy
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Figure: P,, solution Figure: Filtered P,, solution



Adaptivity with FP,,

FP,, will be (at best) O(n?) in angle size

Angular adaptivity can reduce the size of n

The filter smooths out Gibbs oscillations

We only want to apply that heavily around discontinuities

Our adaptivity process can tell us where there are discontinuities

Preserves high order where smooth



Adaptivity with FP,,

Fix constant filter strength Z%
Solve coarse linear systems (forward + adjoint)
Compute goal-based error metrics and refine

Our spatial discretisation gives us the amount of stabilisation
applied Ygtan

Compute (heuristic) spatially-dependent filter strength ¢

Solve refined/spatially-filtered linear system

~ (1/3)
=i [ sl :
max(|Xstan|)



7Tem

Figure: Schematic of the 2D Brunner lattice problem. The red region is a

pure absorber (10 cm™1), the region is pure scatter (1 cm™1), with the
the white bordered region a source.



Brunner problem with adapted FP,,
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F|gu €. The ® goal-based P,, adapts, dashed & goal-based FP,, adapts, spatially dependent Z¢, with E% = 10.
Solid A is uniform P,,, the dotted A is uniform FP,, with 3¢ = 10 with dashed 3¢ = 1 and ¢ uniform LS PO FEM.



Brunner problem with adapted FP,,
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Solid A is uniform P,,, the dotted A is uniform FP,, with 3¢ = 10 with dashed 3¢ = 1 and ¢ uniform LS PO FEM.



Brunner problem with adapted FP,,
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Figure: Number of angles applied by our adaptive FP,, algorithm after 10
adapt steps.



Brunner problem with adapted FP,,
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Figure: Spatially-dependent filter values after 10 adapt steps



Dogleg problem with adapted FP,
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Figure: No angles after 10 adapt steps
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Dogleg problem with adapted FP,
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Solid A is uniform P,,, the dash-dotted A is uniform FP,, with 3¢ = 10 and ¢ uniform LS PO FEM. The ® are
goal-based adapted non-standard Haar wavelets



Dogleg problem with adapted FP,
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FlgU Ie. The ® goal-based P,, adapts, dashed & goal-based FP,, adapts, spatially dependent 3¢, with E% = 10.
Solid A is uniform P,,, the dash-dotted A is uniform FP,, with 3¢ = 10 and ¢ uniform LS PO FEM. The ® are
goal-based adapted non-standard Haar wavelets



Goal-based adaptivity

We need something to “bootstrap” the adapt

Diffusion approximation won’t work - H; captures exactly
P, doesn't have ray effects, but Gibbs

Filtered P,, removes Gibbs, reduces convg. rate to ~ 0.5
Applying BCs and dense angular matrices still O(n?)

Use (bad but ray-effect free) FP,, solution to force adapts
When a single ray can see detector

Then scalable adapt takes over and resolves to high accuracy

Note “high accuracy” can mean 1 decimal place!
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Figure: Hy and FPy5 in vacuum source/detector problem - 40/1 ratio
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Scalar flux
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Figure: Schematic of the 2D Brunner lattice problem. The red region is a

pure absorber (10 cm™1), the region is pure scatter (1 cm™1), with the
the white bordered region a source.
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Figure: Number of angles applied with regular adaptivity after 7 adapt steps.
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Figure: Adapted angular flux at x = 3,y = 3.5
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Figure: Adapted angular flux at x = 2.5,y = 2.5
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Figure: The @ are regular Haar adapts with threshold coefficient 1x 10>
with the dashed the standard Haar decomposition and the solid the
non-standard. The A is uniform P,, and ¢ is uniform P0-DG with level-set.
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Figure: The @ are regular Haar adapts with threshold coefficient 1x 10>
with the dashed the standard Haar decomposition and the solid the
non-standard. The A is uniform P,, and ¢ is uniform P0-DG with level-set.



FETCH2 goal-based spatial adaptivity

Figure: Initial mesh Figure: After one adapt

Anisotropic hr spatial adaptivity is only refining the mesh where
necessary to reduce error in the goal



Figure: Angular adaptivity after 13 levels of refinement in a duct problem



Figure: Angular adaptivity after 13 levels of refinement in a duct problem



Figure: Angular adaptivity after 13 levels of refinement in a duct problem



Figure: Smallest angular element - 9 x1078 sr
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