Robust error metrics for adaptivity with ray-effects

Steven Dargaville

Richard Smedley-Stevenson, Paul Smith, Christopher Pain

Applied Modelling and Computation Group, Imperial College London

4th November 2020

Imperial College London

Ray-effects

- Any non-rotational invariant (NRI) angular discretisation gives ray-effects (Sn, FEM, etc)
- This is the pre-asymptotic region of convergence
- Want to solve problems with small solid angle (1× 10⁻⁹ sr.)

Angular adaptivity

- Often don't need high resolution everywhere in space/energy
- Error metric must:
- 1. Be able to refine in the pre-asymptotic regime to "resolve" ray-effects
- Be able to refine in asymptotic regime to capture real discontinuities
- 3. Be locally refineable
- 4. Be scalably refineable

Haar wavelets

- Hierarchical basis on each octant P⁰ DG
- ▶ Hence equivalent to P⁰ DG FEM in angle
- Can do arbritary anisotropic refinement in $\mathcal{O}(n)$

S. Dargaville, A. G. Buchan, R. P. Smedley-Stevenson, P. N. Smith, and C. C. Pain. Scalable angular adaptivity for Boltzmann transport. *Journal of Computational Physics*, 406(109124), 2020a

Error metrics

- Could use regular error metric
- Rely on wavelet properties (norm-equiv and cancellation)
- Hence refine where flux is big and discontinuous

Figure: The red region is a source, the blue region is pure absorber (1 cm^{-1}) , with the white, green and red regions pure vacuum.

Regular adapt + load balance

Goal-based error metric

- Chose a goal to reduce error in (e.g., avg flux in region)
- \blacktriangleright Solve forward and adjoint problems Ψ and Ψ^*
- Form forward and adjoint residuals $\hat{\mathbf{R}}$ and $\hat{\mathbf{R}}^{*}$
- Dual-weighted residual method gives:

$$\mathbf{e} = \frac{\max\{|\boldsymbol{\Psi} \odot \hat{\boldsymbol{\mathbf{R}}}^*|, |\boldsymbol{\Psi}^* \odot \hat{\boldsymbol{\mathbf{R}}}|\} N_{\text{DOF}}}{\tau},$$

Then trigger refinement where e is big

Goal-based adaptivity and ray-effects

- Rely on being able to "see" the detector in pre-asymptotic
- Error metric is zero no adapt!

Figure: Source/detctor problem in a vacuum

"Fake" robustness

Figure: H_1 solution on coarse (3000 elements) and fine mesh (265k elements)

- Detector response on coarse mesh from numerical diffusion
- Refined spatial mesh gives zero response
- "Fake" response also from aligned detector, or scatter path

Robust error metric

- Let's try and build a cheap surrogate solution without ray-effects
- Use this to trigger refinement in pre-asymptotic
- Can't use diffusion equation as isotropic in angle
- Can't use different quadrature/NRI disc.
- Could add angular diffusion to NRI but how to add "enough" / "not too much"
- P_n is rotationally invariant but poorly conditioned due to Gibbs with streaming

Robustness with FP_n

- Filtered P_n equivalent to adding angular diffusion
- Converges to true transport solution
- No-ray effects and constant condition number with pure streaming
- ▶ But $\mathcal{O}(n^2)$ because of BCs

Ryan G. McClarren and Cory D. Hauck. Robust and accurate filtered spherical harmonics expansions for radiative transfer. *Journal of Computational Physics*, 229(16):5597–5614, August 2010. ISSN 0021-9991

S. Dargaville, A. G. Buchan, R. P. Smedley-Stevenson, P. N. Smith, and C. C. Pain. Angular adaptivity with spherical harmonics for Boltzmann transport. *Journal of Computational Physics*, 397(108846), 2019

Asymptotic regimes

- Exploit pre-asymptotic regime is different for FP_n and NRI disc.
- ▶ Use low-order $\operatorname{FP}_n \mathcal{O}(n^2)$ solution to bootstrap our error metric
- Then scalable $\mathcal{O}(n)$ Haar adapt takes over

Figure: Pure vacuum source/detector

Figure: \diamond uniform LS P⁰ FEM, \triangle is uniform FP_n with $\Sigma_{\rm f} = 0.1$.

Simple heuristic

Figure: FP_1 vs Haar solution Shaded black where > 10

 Solve Haar forward/adjoint, then FP_n forward/adjoint

- Use FP_n solution in metric if 10 times bigger than Haar
- Then refine Haars and repeat
- In limit of FP_n refined, heuristic reduced and τ reduced
 - Goal-based Haar adapt converges to true solution

Duct problem - Goal based

Figure: \Box is fixed refined Haars, \otimes goal-based Haar adapts, \diamond uniform LS P⁰ FEM, \triangle is uniform FP_n with $\Sigma_{\rm f} = 0.1$.

Duct problem - Goal based

Figure: \Box is fixed refined Haars, \otimes goal-based Haar adapts, \diamond uniform LS P⁰ FEM, \triangle is uniform FP_n with $\Sigma_{\rm f} = 0.1$.

Duct problem - Goal based

Figure: FP_{21} solution at midpoint

Figure: Haar adapt after 5 steps

Figure: Haar adapt after 10 steps

3D scatter box

Figure: 10x10x6cm box, all regions vacuum except blue pure scattering regions $(1cm^{-1})$, red region is source, green region is detector.

3D scatter box - Goal based

Figure: \Box is fixed refined Haars, \otimes goal-based Haar adapts, \times non-robust Haar adapt, \diamond uniform LS P⁰ FEM, \triangle is uniform FP_n with $\Sigma_{\rm f} = 0.1$.

3D scatter box - Goal based

Figure: \Box is fixed refined Haars, \otimes goal-based Haar adapts, \times non-robust Haar adapt, \diamond uniform LS P⁰ FEM, \triangle is uniform FP_n with $\Sigma_{\rm f} = 0.1$.

3D scatter box - Goal based

Figure: Adapted angular flux in direct path between source/detector.

Conclusions

- If you're doing goal-based space or angle adapts
- Be careful about the pre-asymptotic regime with streaming
- Using FP_n surrogate solution brings robustness
- If you aren't robust in all parameter regimes, why bother?
- Hopefully now robust for combined space + angle adapts

Thanks for listening

S. Dargaville, A. G. Buchan, R. P. Smedley-Stevenson, P. N. Smith, and C. C. Pain. Angular adaptivity with spherical harmonics for Boltzmann transport. *Journal of Computational Physics*, 397(108846), 2019

S. Dargaville, A. G. Buchan, R. P. Smedley-Stevenson, P. N. Smith, and C. C. Pain. Scalable angular adaptivity for Boltzmann transport. *Journal of Computational Physics*, 406(109124), 2020a

S. Dargaville, R. P. Smedley-Stevenson, P. N. Smith, and C. C. Pain. Goal-based angular adaptivity for boltzmann transport in the presence of ray-effects. *Journal of Computational Physics*, 421(109759), 2020b

Figure: Flux near source and duct

Figure: No. angles after 9 adapt steps

Figure: \triangle is uniform P_n, the \Box is uniform Haars, * regular adapt Haars, \bigcirc goal-based linear wavelets [1], \otimes goal-based Haar adapts, \diamond uniform LS P⁰ FEM

Figure: \triangle is uniform P_n, the \Box is uniform Haars, * regular adapt Haars, \bigcirc goal-based linear wavelets [1], \otimes goal-based Haar adapts, \diamond uniform LS P⁰ FEM

Adapt step:	1	2	3		4	5
Cum. runtime (μ s) per final DOF:	57	130	14	4	134	121
Peak memory use:	254.6	199.	2 155	5.9	95.3	66.4
Adapt step:	6	7	8	9		10
Cum. runtime (μ s) per final DOF:	97.2	94.6	102	119		136
Peak memory use:	48.8	35.2	31.3	30.	72	30.67

Table: Time and peak memory in copies of adapted ang. flux

- Linear growth in memory consumption per adapted DOF
- Close to linear growth in runtime per adapted DOF
- \blacktriangleright We have scalability in this problem min solid angle 5 \times 10^{-6} sr
- ▶ Uniform DG LS S₇₈₀ sweep would need 136 ns solve time per DOF

Ray-effect free

- We need something to "bootstrap" the angle adapt
- Or to compute an importance map/weight window in angle
- Diffusion approximation won't work Constant in angle
- Can't use anything with ray-effects
- \triangleright P_n doesn't have ray effects, but Gibbs
- Filtered P_n removes Gibbs, reduces convg. rate in smooth problems
- Still converges to real transport solution

S. Dargaville, A. G. Buchan, R. P. Smedley-Stevenson, P. N. Smith, and C. C. Pain. Angular adaptivity with spherical harmonics for Boltzmann transport. *Journal of Computational Physics*, 397(108846), 2019

Filtered P_n

$$f(\mathbf{\Omega}) = \sum_{l=0}^{N} \sum_{m=-l}^{l} \left[\sigma\left(\frac{l}{N+1}\right) \right]^{s} f_{l,m} Y_{l,m}(\mathbf{\Omega}),$$

- where $\sigma(\eta)$ is a filter function and s is a strength.
- Rotationally-invariant
- (Close to) constant condition number with angular refinement
- Equivalent to a forward-peaked scattering operator
- Filter acts like angular "diffusion"

▶ Still $O(n^2)$ in angle size (BCs, jump terms)

Ryan G. McClarren and Cory D. Hauck. Robust and accurate filtered spherical harmonics expansions for radiative transfer. *Journal of Computational Physics*, 229(16):5597–5614, August 2010. ISSN 0021-9991

David Radice, Ernazar Abdikamalov, Luciano Rezzolla, and Christian D. Ott. A new spherical harmonics scheme for multi-dimensional radiation transport I. Static matter configurations. *Journal of Computational Physics*, 242:648–669, June 2013. ISSN 0021-9991. doi: 10.1016/j.jcp.2013.01.048. URL http://www.sciencedirect.com/science/article/pii/S0021999113001125

Filtered P_n

- Compute (low-order but ray-effect free) FP_n solution
- Use this to compute error metric/importance map
- Then scalable adapt or Monte-Carlo takes over and resolves to high accuracy

Adaptivity with FP_n

- ▶ FP_n will be (at best) $\mathcal{O}(n^2)$ in angle size
- Angular adaptivity can reduce the size of n
- The filter smooths out Gibbs oscillations
- We only want to apply that heavily around discontinuities
- Our adaptivity process can tell us where there are discontinuities
- Preserves high order where smooth

Adaptivity with FP_n

• . . .

- Fix constant filter strength $\Sigma_{\rm f}^1$
- Solve coarse linear systems (forward + adjoint)
- Compute goal-based error metrics and refine
- \blacktriangleright Our spatial discretisation gives us the amount of stabilisation applied $\tilde{\Sigma}_{stab}$
- \blacktriangleright Compute (heuristic) spatially-dependent filter strength $\Sigma_{\rm f}$
- Solve refined/spatially-filtered linear system

$$\Sigma_{f} = \Sigma_{f}^{1} \left(\frac{|\tilde{\Sigma}_{stab}|}{\max(|\tilde{\Sigma}_{stab}|)} \right)^{(1/3)}$$

Figure: Schematic of the 2D Brunner lattice problem. The red region is a pure absorber (10 cm⁻¹), the blue region is pure scatter (1 cm⁻¹), with the the white bordered region a source.

Figure: The \otimes goal-based P_n adapts, dashed \otimes goal-based FP_n adapts, spatially dependent Σ_f , with $\Sigma_f^1 = 10$. Solid \triangle is uniform P_n, the dotted \triangle is uniform FP_n with $\Sigma_f = 10$ with dashed $\Sigma_f = 1$ and \diamond uniform LS P⁰ FEM.

Figure: The \otimes goal-based P_n adapts, dashed \otimes goal-based FP_n adapts, spatially dependent Σ_f , with $\Sigma_f^1 = 10$. Solid \triangle is uniform P_n, the dotted \triangle is uniform FP_n with $\Sigma_f = 10$ with dashed $\Sigma_f = 1$ and \diamond uniform LS P⁰ FEM.

Figure: Number of angles applied by our adaptive FP_n algorithm after 10 adapt steps.

Figure: Spatially-dependent filter values after 10 adapt steps

Dogleg problem with adapted FP_n

Figure: No angles after 10 adapt steps

Figure: Filter strength

Dogleg problem with adapted FP_n

Figure: The \otimes goal-based P_n adapts, dashed \otimes goal-based FP_n adapts, spatially dependent $\Sigma_{\rm f}$, with $\Sigma_{\rm f}^1 = 10$. Solid \triangle is uniform P_n, the dash-dotted \triangle is uniform FP_n with $\Sigma_{\rm f} = 10$ and \diamond uniform LS P⁰ FEM. The \otimes are goal-based adapted non-standard Haar wavelets

Dogleg problem with adapted FP_n

Figure: The \otimes goal-based P_n adapts, dashed \otimes goal-based FP_n adapts, spatially dependent $\Sigma_{\rm f}$, with $\Sigma_{\rm f}^1 = 10$. Solid \triangle is uniform P_n, the dash-dotted \triangle is uniform FP_n with $\Sigma_{\rm f} = 10$ and \diamond uniform LS P⁰ FEM. The \otimes are goal-based adapted non-standard Haar wavelets

Goal-based adaptivity

- We need something to "bootstrap" the adapt
- Diffusion approximation won't work H₁ captures exactly
- \triangleright P_n doesn't have ray effects, but Gibbs
- Filtered P_n removes Gibbs, reduces convg. rate to ~ 0.5
- Applying BCs and dense angular matrices still $\mathcal{O}(n^2)$
- Use (bad but ray-effect free) FP_n solution to force adapts
- When a single ray can see detector
- Then scalable adapt takes over and resolves to high accuracy
- ▶ Note "high accuracy" can mean 1 decimal place!

Figure: H_1 and FP $_{15}$ in vacuum source/detector problem - 40/1 ratio

Figure: Schematic of the 2D Brunner lattice problem. The red region is a pure absorber (10 cm⁻¹), the blue region is pure scatter (1 cm⁻¹), with the the white bordered region a source.

Figure: Number of angles applied with regular adaptivity after 7 adapt steps.

Figure: Adapted angular flux at x = 3, y = 3.5

Figure: Adapted angular flux at x = 2.5, y = 2.5

Figure: The \bullet are regular Haar adapts with threshold coefficient 1×10^{-5} with the dashed the standard Haar decomposition and the solid the non-standard. The \triangle is uniform P_n and \diamond is uniform P0-DG with level-set.

Figure: The \bullet are regular Haar adapts with threshold coefficient 1×10^{-5} with the dashed the standard Haar decomposition and the solid the non-standard. The \triangle is uniform P_n and \diamond is uniform P0-DG with level-set.

FETCH2 goal-based spatial adaptivity

Figure: Initial mesh

Figure: After one adapt

Anisotropic hr spatial adaptivity is only refining the mesh where necessary to reduce error in the goal

Figure: Angular adaptivity after 13 levels of refinement in a duct problem

Figure: Angular adaptivity after 13 levels of refinement in a duct problem

Figure: Angular adaptivity after 13 levels of refinement in a duct problem

Figure: Smallest angular element - 9 $\times 10^{-8}~{\rm sr}$