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Ray-effects

I Any non-rotational invariant
(NRI) angular discretisation
gives ray-effects (Sn, FEM,
etc)

I This is the pre-asymptotic
region of convergence

I Want to solve problems with
small solid angle (1× 10-9 sr.)



Angular adaptivity

I Often don’t need high
resolution everywhere in
space/energy

I Error metric must:

1. Be able to refine in the
pre-asymptotic regime to
“resolve” ray-effects

2. Be able to refine in asymptotic
regime to capture real
discontinuities

3. Be locally refineable

4. Be scalably refineable
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Haar wavelets

I Hierarchical basis on each octant P0 DG

I Hence equivalent to P0 DG FEM in angle

I Can do arbritary anisotropic refinement in O(n)
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Error metrics

I Could use regular error metric

I Rely on wavelet properties
(norm-equiv and cancellation)

I Hence refine where flux is big
and discontinuous
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Figure: The red region is a source, the
blue region is pure absorber (1 cm−1),
with the white, green and red regions
pure vacuum.



Regular adapt + load balance



Goal-based error metric

I Chose a goal to reduce error in (e.g., avg flux in region)

I Solve forward and adjoint problems - Ψ and Ψ∗

I Form forward and adjoint residuals - R̂ and R̂
∗

I Dual-weighted residual method gives:

e =
max{|Ψ� R̂

∗|, |Ψ∗ � R̂|}NDOF

τ
,

I Then trigger refinement where e is big



Goal-based adaptivity and ray-effects

I Rely on being able to “see” the detector in pre-asymptotic

I Error metric is zero - no adapt!

I Easy to not bump into this

Source Detector

ψ = 0;ψ∗ = 0

Figure: Source/detctor problem in a vacuum



“Fake” robustness

Figure: H1 solution on coarse (3000 elements) and fine mesh (265k elements)

I Detector response on coarse mesh from numerical diffusion

I Refined spatial mesh gives zero response

I “Fake” response also from aligned detector, or scatter path



Robust error metric

I Let’s try and build a cheap surrogate solution without ray-effects

I Use this to trigger refinement in pre-asymptotic

I Can’t use diffusion equation as isotropic in angle

I Can’t use different quadrature/NRI disc.

I Could add angular diffusion to NRI but how to add
“enough”/“not too much”

I Pn is rotationally invariant but poorly conditioned due to Gibbs
with streaming



Robustness with FPn

I Filtered Pn equivalent to adding angular diffusion

I Converges to true transport solution

I No-ray effects and constant condition number with pure streaming

I But O(n2) because of BCs

Figure: Pn solution Figure: Filtered Pn solution
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Asymptotic regimes
I Exploit pre-asymptotic regime is different for FPn and NRI disc.

I Use low-order FPn O(n2) solution to bootstrap our error metric

I Then scalable O(n) Haar adapt takes over
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Figure: Pure vacuum source/detector
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Figure: � uniform LS P0 FEM, 4 is
uniform FPn with Σf = 0.1.



Simple heuristic

Figure: FP1 vs Haar solution
Shaded black where > 10

I Solve Haar forward/adjoint,
then FPn forward/adjoint

I Use FPn solution in metric if
10 times bigger than Haar

I Then refine Haars and repeat

I In limit of FPn refined,
heuristic reduced and τ
reduced

I Goal-based Haar adapt
converges to true solution



Duct problem - Goal based
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Figure: � is fixed refined Haars, ⊗ goal-based Haar adapts, � uniform LS P0

FEM, 4 is uniform FPn with Σf = 0.1.



Duct problem - Goal based
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Figure: � is fixed refined Haars, ⊗ goal-based Haar adapts, � uniform LS P0

FEM, 4 is uniform FPn with Σf = 0.1.



Duct problem - Goal based

Figure: FP21 solution at midpoint Figure: Haar adapt after 5 steps

Figure: Haar adapt after 10 steps



3D scatter box

Figure: 10x10x6cm box, all regions vacuum except blue pure scattering
regions (1cm−1), red region is source, green region is detector.



3D scatter box - Goal based
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Figure: � is fixed refined Haars, ⊗ goal-based Haar adapts, x non-robust
Haar adapt, � uniform LS P0 FEM, 4 is uniform FPn with Σf = 0.1.



3D scatter box - Goal based

102 103 104 105

10−5

10−4

10−3

10−2

10−1

100

101

Time (s)

R
el
at
iv
e
er
ro
r

Figure: � is fixed refined Haars, ⊗ goal-based Haar adapts, x non-robust
Haar adapt, � uniform LS P0 FEM, 4 is uniform FPn with Σf = 0.1.



3D scatter box - Goal based

Figure: Adapted angular flux in direct path between source/detector.



Conclusions

I If you’re doing goal-based
space or angle adapts

I Be careful about the
pre-asymptotic regime with
streaming

I Using FPn surrogate solution
brings robustness

I If you aren’t robust in all
parameter regimes, why
bother?

I Hopefully now robust for
combined space + angle
adapts



Thanks for listening
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Dogleg problem - Goal based

Figure: Flux near source and duct
Figure: No. angles after 9 adapt steps



Dogleg problem - Goal based
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Figure: 4 is uniform Pn, the � is uniform Haars, * regular adapt Haars, D goal-based linear wavelets [1], ⊗
goal-based Haar adapts, � uniform LS P0 FEM



Dogleg problem - Goal based
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Figure: 4 is uniform Pn, the � is uniform Haars, * regular adapt Haars, D goal-based linear wavelets [1], ⊗
goal-based Haar adapts, � uniform LS P0 FEM



Dogleg problem - Goal based

Adapt step: 1 2 3 4 5

Cum. runtime (µs) per final DOF: 57 130 144 134 121
Peak memory use: 254.6 199.2 155.9 95.3 66.4

Adapt step: 6 7 8 9 10

Cum. runtime (µs) per final DOF: 97.2 94.6 102 119 136
Peak memory use: 48.8 35.2 31.3 30.72 30.67

Table: Time and peak memory in copies of adapted ang. flux

I Linear growth in memory consumption per adapted DOF

I Close to linear growth in runtime per adapted DOF

I We have scalability in this problem - min solid angle 5× 10-6 sr

I Uniform DG LS S780 sweep would need 136 ns solve time per DOF



Ray-effect free

I We need something to “bootstrap” the angle adapt

I Or to compute an importance map/weight window in angle

I Diffusion approximation won’t work - Constant in angle

I Can’t use anything with ray-effects

I Pn doesn’t have ray effects, but Gibbs

I Filtered Pn removes Gibbs, reduces convg. rate in smooth
problems

I Still converges to real transport solution
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Filtered Pn

f(Ω) =

N∑
l=0

l∑
m=−l

[
σ

(
l

N + 1

)]s
fl,mYl,m(Ω),

I where σ(η) is a filter function and s is a strength.

I Rotationally-invariant

I (Close to) constant condition number with angular refinement

I Equivalent to a forward-peaked scattering operator

I Filter acts like angular “diffusion”

I Still O(n2) in angle size (BCs, jump terms)
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Filtered Pn

I Compute (low-order but ray-effect free) FPn solution

I Use this to compute error metric/importance map

I Then scalable adapt or Monte-Carlo takes over and resolves to
high accuracy

Figure: Pn solution Figure: Filtered Pn solution



Adaptivity with FPn

I FPn will be (at best) O(n2) in angle size

I Angular adaptivity can reduce the size of n

I The filter smooths out Gibbs oscillations

I We only want to apply that heavily around discontinuities

I Our adaptivity process can tell us where there are discontinuities

I Preserves high order where smooth



Adaptivity with FPn
I Fix constant filter strength Σ1

f

I Solve coarse linear systems (forward + adjoint)

I Compute goal-based error metrics and refine

I Our spatial discretisation gives us the amount of stabilisation
applied Σ̃stab

I Compute (heuristic) spatially-dependent filter strength Σf

I Solve refined/spatially-filtered linear system

I . . .

Σf = Σ1
f

(
|Σ̃stab|

max(|Σ̃stab|)

)(1/3)

.



7 cm

7 cm

Source

Figure: Schematic of the 2D Brunner lattice problem. The red region is a
pure absorber (10 cm−1), the blue region is pure scatter (1 cm−1), with the
the white bordered region a source.



Brunner problem with adapted FPn
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Figure: The ⊗ goal-based Pn adapts, dashed ⊗ goal-based FPn adapts, spatially dependent Σf, with Σ1
f = 10.

Solid 4 is uniform Pn, the dotted 4 is uniform FPn with Σf = 10 with dashed Σf = 1 and � uniform LS P0 FEM.



Brunner problem with adapted FPn
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Figure: The ⊗ goal-based Pn adapts, dashed ⊗ goal-based FPn adapts, spatially dependent Σf, with Σ1
f = 10.

Solid 4 is uniform Pn, the dotted 4 is uniform FPn with Σf = 10 with dashed Σf = 1 and � uniform LS P0 FEM.



Brunner problem with adapted FPn

Figure: Number of angles applied by our adaptive FPn algorithm after 10
adapt steps.



Brunner problem with adapted FPn

Figure: Spatially-dependent filter values after 10 adapt steps



Dogleg problem with adapted FPn

Figure: No angles after 10 adapt steps Figure: Filter strength



Dogleg problem with adapted FPn
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Figure: The ⊗ goal-based Pn adapts, dashed ⊗ goal-based FPn adapts, spatially dependent Σf, with Σ1
f = 10.

Solid 4 is uniform Pn, the dash-dotted 4 is uniform FPn with Σf = 10 and � uniform LS P0 FEM. The ⊗ are
goal-based adapted non-standard Haar wavelets



Dogleg problem with adapted FPn
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Figure: The ⊗ goal-based Pn adapts, dashed ⊗ goal-based FPn adapts, spatially dependent Σf, with Σ1
f = 10.

Solid 4 is uniform Pn, the dash-dotted 4 is uniform FPn with Σf = 10 and � uniform LS P0 FEM. The ⊗ are
goal-based adapted non-standard Haar wavelets



Goal-based adaptivity

I We need something to “bootstrap” the adapt

I Diffusion approximation won’t work - H1 captures exactly

I Pn doesn’t have ray effects, but Gibbs

I Filtered Pn removes Gibbs, reduces convg. rate to ∼ 0.5

I Applying BCs and dense angular matrices still O(n2)

I Use (bad but ray-effect free) FPn solution to force adapts

I When a single ray can see detector

I Then scalable adapt takes over and resolves to high accuracy

I Note “high accuracy” can mean 1 decimal place!



Figure: H1 and FP15 in vacuum source/detector problem - 40/1 ratio



Figure: Detector: H2 - -0.4 × 10-14; H3 - 0.3 × 10-13; H4 - 0.5 × 10-6



Figure: Detector: H5 - 0.2 × 10-4; H6 - 0.1 × 10-2; H7 - 0.3 × 10-2



7 cm

7 cm

Source

Figure: Schematic of the 2D Brunner lattice problem. The red region is a
pure absorber (10 cm−1), the blue region is pure scatter (1 cm−1), with the
the white bordered region a source.



Figure: Number of angles applied with regular adaptivity after 7 adapt steps.



Figure: Adapted angular flux at x = 3, y = 3.5



Figure: Adapted angular flux at x = 2.5, y = 2.5
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Figure: The  are regular Haar adapts with threshold coefficient 1× 10-5

with the dashed the standard Haar decomposition and the solid the
non-standard. The 4 is uniform Pn and � is uniform P0-DG with level-set.
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Figure: The  are regular Haar adapts with threshold coefficient 1× 10-5

with the dashed the standard Haar decomposition and the solid the
non-standard. The 4 is uniform Pn and � is uniform P0-DG with level-set.



FETCH2 goal-based spatial adaptivity

Figure: Initial mesh Figure: After one adapt

I Anisotropic hr spatial adaptivity is only refining the mesh where
necessary to reduce error in the goal



Figure: Angular adaptivity after 13 levels of refinement in a duct problem



Figure: Angular adaptivity after 13 levels of refinement in a duct problem



Figure: Angular adaptivity after 13 levels of refinement in a duct problem



Figure: Smallest angular element - 9 ×10−8 sr
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