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The IVR strategy: context and facts

IVR is a Severe Accident strategy that aims at stopping
corium progression inside the vessel, by external
cooling.

IVR first implemented in Finland, then Hungary, Slovakia,
Czech Republic, for VVER-440 reactors

Safety margin is sufficient because of low power and e i go ! —
large amount of steel: E— G 12

Box PG
Water level inSG b

e Average heat flux 0.5MW/m? (maximum 1MW/m?) = | —
* External cooling up to (CHF) 1,5MW/m? (CHF) thanks . . ¢ romes [

to hydraulic channel — o M
* Residual vessel thickness > 7cm o e

* Large amount of water in circuits = significant time
before corium arrival in lower plenum
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The IVR strategy: Gen lll reactors

AP1000, APR1400, HPR1000, CAP1400
— 9in operation

— 15 under construction
HPR1000 ?
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- 0000 Apr1400
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IVR safety evaluation: “bounding cases”

Approach proposed initially for AP600 and VVER440 (Theofanous et al. 1997):

» All core inventory is molten and relocated in the lower plenum = oxide
pool

* Molten steel forms a layer located above the oxide pool
* This configuration is assumed to be conservative w.r.t. heat flux @,

Metal layer (Steel) Maximum heat flux

Oxide pool (UO,, ZrO,)
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The “steady-state heat flux” criterion

e The standard criterion for IVR evaluation is:
Kgo = Qmax/PcHF

* Acceptance corresponds to K, <1

e But it does not allow to define a safety “margin” because:

* There is no absolute “reference value” (it is only relative to the local CHF which is
not constant)

* |tis not obvious to define an “acceptable distance” between 2 heat fluxes

s NV R
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Oxide/metal stratification: several kinetics

In reality, stratification may start with a heavier metal, becoming progressively
lighter.

‘1’ steel addition from melting (vessel and internal structures)

e ‘2’ :steel transfer through crust

* ‘3’ mass transfer between heavy metal and oxide pool
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B2 IVR safety evaluation: “really bounding”?

* The bounding case does not bound all intermediate states
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* The bounding case does not represent the final state

the shape of the ablated vessel may significantly differ from the shape deduced
from the final state
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Drawbacks of bounding case approach

* Critical parameter “mass of steel” includes too many sources of uncertainties

* Design
* Scenario
* Modelling

—> its distribution function is more complex than usually assumed

* No independence of uncertain variables

 Some variable are related :
— mass of steel and power,
— FP distribution and oxidation degree of Zr,

* Unlikely combinations of uncertain variables
* This may lead to overestimate the probability of “favorable” cases
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Final mass of steel and impact on density

U/Zr=1.45, Cox=0.52

9800
Metal
9600 Oxide
9400 |
9200 |
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@ internal
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o structures
8400 | i
8200 | l
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7800
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Metal mass (kg)

 What is the kinetics of evolution between heavy and
light metal?

_ ) From Almjashev et al., deliverable
* How does the configuration change? D3.2 of IVMR project
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LeEsIZeN Species transport near the metal-oxide interfaces

Reference: Fichot & Carénini, 2015

First stage: ablation of steel layer driven
by the diffusion of Iron across the two-
phase interaction layer

Second stage: “oxidation” of the bottom
layer driven by interaction at the top
interface

Steel layer (SS)

Oxide pool (UO2, ZrO2, Zr)

Heavy metal layer (U,Zr,Fe)

Light metal layer (U, Zr, Fe)

Oxide pool (UO2, ZrO2, Zr)

Heavy metal layer (U,Zr,Fe)
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A new generic safety criterion (1/2)

* Vessel thickness 6’
* Integrates all the peaks of heat flux (additional ablation whenever the
internal heat flux exceeds the external one)
* Is a measure of the mechanical resistance of the vessel 2 it is a “natural”
safety criterion

* A straightforward safety margin

__ Ofail

* 0= Omax = =2 0 =m &g , where ‘m’ is the margin

1 [N/ R
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A new generic safety criterion (2/2)
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*  Ks = mbrqi1/Omin where ‘6, is the minimum residual thickness

* Acceptance correspondsto Ks < 1

2 [N/ R

Modelling In Nuclear Science Engineering Semi



2D Finite-Elements approach

Evaluation of d¢g4;; as a function of internal pressure load in simplified geometry
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I"

322N Simplification of the problem: “cold shell” approximation
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Figure 6: Temperature dependent Young's Modulus and yield stress and true
ultimate stress as measured in tensile tests.
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Relations between both criteria K5 and K,

* A “critical mechanical heat flux” '¢¢,;;" may be defined
. kAT fus
(pfall _ m5fail
* It may be interpreted as the heat flux for which, at steady-state, the vessel
would fail mechanically, even if it is not completely ablated

2 K(S ~ (pmax/(pfail

* Integrity of the vessel requires to fulfill both criteria

@rqi1 includes the impact of AP, whereas @y is independent of it

*  @rqai1(APpgx= 1bar) = 4.5 MW /m?* with m = 10
*  @raii(APpax= 5bar) = 0.9 MW /m?* with m = 10

15 [N/ R
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HEBaIEN A “best-estimate transient” methodology (1/2)

* Tabulation of minimum vessel thickness o5,

— Function of vessel material
— Function of internal load: 84 = f(Pint)

e Evaluation of internal loads as a function of time
— Primary pressure

— Corium weight

e Evaluation of “cumulated” wall ablation as a function of time = §(6, t) for
each angular position 6

— Taking into account short peak transient heat flux
— Taking into account variation of the angular position of maximum heat flux

e Check that §(8,t) » mdsg

— At any location @ along the vessel

—Atanytimet
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HEBSIZaN A “best-estimate transient” methodology (2/2)

Graphical illustration of the method
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fast depressurization followed by a late pressure
peak when significant ablation is reached
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lllustration with a reactor case, for 3 scenarios
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Conclusions (1/2)

 |n order to be general and take into account both risks of mechanical failure
and thermal melt-through, it is necessary to consider two safety criteria :

— Based on the evaluation of two parameters @4, aNd 8pin

— Using 2 reference values @cyp and &¢4;

* This analysis may be done in the classical frame of steady-state “bounding
case” approach = but may be non-conservative or inaccurate

* Astraightforward and more accurate way to do this analysis is to use a
“transient best-estimate” approach which calculates the progressive ablation
of the vessel following the scenario evolution (pressure variations)

v [N/ R
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Conclusions (2/2)

* The selected methodology of IVR evaluation depends on:

— The objective of IVR implementation (practical elimination of vessel failure or not)

— The expected safety margin

 “Transient best-estimate” approach:

— Is more accurate and gives a clearer picture of the situation
— Is now possible with some SA codes (models are more mature)

— Requires more detailed models and an associated uncertainty analysis (BEPU)

0 [N/ R
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Appendices
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Choice of evaluation method

New design
Practical IVR
elimination Implementation ?
Backfitting
Objective ?
New design
Delay IVR
corium

Implementation ?

progression

Backfitting
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Heat transfer in the top metal layer: CFD approach
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Relations between both criteria K5 and K,

“critical mechanical heat flux” '¢¢,;;’

. Qo = kATqu
fad Mmbfail
1 kAT fys
2 Ks = Ofail Omin = Qomax/(/)fail
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