

Computational methods developed to propose a new methodology for IVR assessment

F. Fichot , L. Carénini, IRSN S. Brumm, M. Sangiorgi, EC/JRC W. Villanueva, KTH A. Filippov, IBRAE

The IVR strategy: context and facts

- IVR is a Severe Accident strategy that aims at stopping corium progression inside the vessel, by external cooling.
- IVR first implemented in Finland, then Hungary, Slovakia, Czech Republic, for VVER-440 reactors
- Safety margin is sufficient because of low power and large amount of steel:
- Average heat flux 0.5MW/m² (maximum 1MW/m²)
- External cooling up to (CHF) 1,5MW/m² (CHF) thanks to hydraulic channel
- Residual vessel thickness > 7cm
- Large amount of water in circuits → significant time before corium arrival in lower plenum

AP1000, APR1400, HPR1000, CAP1400

- 9 in operation
- 15 under construction

3

IVR safety evaluation: "bounding cases"

Approach proposed initially for AP600 and VVER440 (Theofanous et al. 1997):

- All core inventory is molten and relocated in the lower plenum → oxide pool
- Molten steel forms a layer located above the oxide pool
- This configuration is assumed to be conservative w.r.t. heat flux φ_{max}

• The standard criterion for IVR evaluation is:

 $K_{\varphi} = \varphi_{max} / \varphi_{CHF}$

- Acceptance corresponds to $K_{\varphi} < 1$
- But it does not allow to define a safety "margin" because:
 - There is no absolute "reference value" (it is only relative to the local CHF which is not constant)

5

• It is not obvious to define an "acceptable distance" between 2 heat fluxes

Oxide/metal stratification: several kinetics

In reality, stratification may start with a heavier metal, becoming progressively lighter.

- '1' steel addition from melting (vessel and internal structures)
- '2' : steel transfer through crust
- '3' mass transfer between heavy metal and oxide pool

IVR safety evaluation: "really bounding"?

- The bounding case does not bound all intermediate states
 - transient situations where the peak heat flux is higher than the heat flux at final state

- The bounding case does not represent the final state
 - the shape of the ablated vessel may significantly differ from the shape deduced from the final state

- Critical parameter "mass of steel" includes too many sources of uncertainties
 - Design
 - Scenario
 - Modelling
 - \rightarrow its distribution function is more complex than usually assumed
- No independence of uncertain variables
 - Some variable are related :
 - mass of steel and power,
 - FP distribution and oxidation degree of Zr,
 - ..
- Unlikely combinations of uncertain variables
 - This may lead to overestimate the probability of "favorable" cases

8

Final mass of steel and impact on density

U/Zr=1.45, Cox=0.52

• How does the configuration change?

From Almjashev et al., deliverable D3.2 of IVMR project

9

Reference: Fichot & Carénini, 2015

First stage: ablation of steel layer driven by the diffusion of Iron across the twophase interaction layer

Second stage: "oxidation" of the bottom layer driven by interaction at the top interface

- Vessel thickness ' δ '
 - Integrates all the peaks of heat flux (additional ablation whenever the internal heat flux exceeds the external one)
 - Is a measure of the mechanical resistance of the vessel → it is a "natural" safety criterion
- A straightforward safety margin

•
$$\sigma \leq \sigma_{max} = \frac{\sigma_{fail}}{m} \rightarrow \delta \geq m \, \delta_{fail}$$
, where 'm' is the margin

A new generic safety criterion (2/2)

- Possible evaluations of δ_{fail}
 - "Cold shell approach" $\delta_{fail} = \frac{R \Delta P_{max}}{2\sigma_{cr}}$
 - Detailed FE calculation (2D) (less conservative)

12

- New safety criterion
 - $K_{\delta} = m \delta_{fail} / \delta_{min}$ where ' δ_{min} ' is the minimum residual thickness
 - Acceptance corresponds to $K_{\delta} < 1$

HORIZON 2020識鍵。

Evaluation of δ_{fail} as a function of internal pressure load in simplified geometry

Simplification of the problem: "cold shell" approximation

14

- A "critical mechanical heat flux" φ_{fail} may be defined
 - $\varphi_{fail} = \frac{k\Delta T_{fus}}{m\delta_{fail}}$
 - It may be interpreted as the heat flux for which, at steady-state, the vessel would fail mechanically, even if it is not completely ablated
 - $\textbf{\textbf{\textbf{>}}} K_{\delta} \approx \varphi_{max}/\varphi_{fail}$
- Integrity of the vessel requires to fulfill both criteria
- φ_{fail} includes the impact of ΔP_{max} whereas φ_{CHF} is independent of it
 - $\varphi_{fail}(\Delta P_{max}=1bar)\approx 4.5 \ MW/m^2$ with m=10
 - $\varphi_{fail}(\Delta P_{max} = 5bar) \approx 0.9 MW/m^2$ with m = 10

A "best-estimate transient" methodology (1/2)

- Tabulation of minimum vessel thickness δ_{fail}
 - Function of vessel material
 - Function of internal load: $\delta_{fail} = f(P_{int})$
- Evaluation of internal loads as a function of time
 - Primary pressure
 - Corium weight
- Evaluation of "cumulated" wall ablation as a function of time $\Rightarrow \delta(\theta,t)$ for each angular position θ

16

- Taking into account short peak transient heat flux
- Taking into account variation of the angular position of maximum heat flux
- Check that $\delta(\theta,t)\gg m\delta_{fail}$
 - At any location heta along the vessel
 - At any time *t*

A "best-estimate transient" methodology (2/2)

Graphical illustration of the method

fast depressurization followed by a late pressure peak when significant ablation is reached

Illustration with a reactor case, for 3 scenarios

18

from HZDR results, Sangiorgi et al., 2019 (IVMR deliverable)

Conclusions (1/2)

- In order to be general and take into account both risks of mechanical failure and thermal melt-through, it is necessary to consider two safety criteria :
 - Based on the evaluation of two parameters φ_{max} and δ_{min}
 - Using 2 reference values φ_{CHF} and δ_{fail}
- This analysis may be done in the classical frame of steady-state "bounding case" approach → but may be non-conservative or inaccurate
- A straightforward and more accurate way to do this analysis is to use a "transient best-estimate" approach which calculates the progressive ablation of the vessel following the scenario evolution (pressure variations)

- The selected methodology of IVR evaluation depends on:
 - The objective of IVR implementation (practical elimination of vessel failure or not)
 - The expected safety margin

- "Transient best-estimate" approach:
 - Is more accurate and gives a clearer picture of the situation
 - Is now possible with some SA codes (models are more mature)
 - Requires more detailed models and an associated uncertainty analysis (BEPU)

This work was funded by the IVMR grant agreement number 662157 (H2020)

Appendices

Choice of evaluation method

Heat transfer in the top metal layer: CFD approach

From NBCJ calculations, WP2.3 of IVMR project

"critical mechanical heat flux" $' \varphi_{fail}'$

•
$$\varphi_{fail} = \frac{k\Delta T_{fus}}{m\delta_{fail}}$$

$$\Rightarrow K_{\delta} = \frac{1}{\varphi_{fail}} \frac{k \Delta T_{fus}}{\delta_{min}} = \varphi_{max} / \varphi_{fail}$$

