Andrew Davis

Multiphysics at UKAEA

2020 Modelling in Nuclear Science and Engineering - 4-5th November 2020 - Bangor

XX.

UK Atomic Energy Authority

Aleks Dubas Helen Brooks Arun Balasubramanian Julita Inca Matthew Mavis

Thanks!

UKAEA History

FFICIAL

UK Atomic Energy Authority

The UK Atomic Energy Authority was formed in 1954 when the British Government set up a new body to oversee the nation's nuclear research programme. The role was to provide Britain's atomic weapons deterrent and develop reactor technologies for the nuclear power stations of the future.

Who are UKAEA?

UKAEA's mission is to deliver sustainable fusion energy and maximise scientific and economic impact.

This is underpinned by four goals:

- Goal 1 Be a world leader in fusion research and development;
- Goal 2 Enable the delivery of sustainable fusion power plants;
- Goal 3 Drive economic growth and high-tech jobs in the UK; and
- Goal 4 Create places that accelerate innovation and develop skilled people for industry to thrive.

What is Fusion?

- Take hot gas of deuterium (D) & tritium (T), make it hot {and keep it hot} (> 150 MK) and bang -> you've done fusion.... easy right?
- Toroidal field coils (and sometimes solenoid) drive a (plasma) current that flows around the middle of the tokamak
- Plasma current self generates a poloidal field, the combination of both provide stability (relative)
- Poloidal field coils shape and control plasma

What is Fusion?

- Take hot gas of deuterium (D) & tritium (T), make it hot {and keep it hot} (> 150 MK) and bang -> you've done fusion.... easy right?
- Toroidal field coils (and sometimes solenoid) drive a (plasma) current that flows around the middle of the tokamak
- Plasma current self generates a poloidal field, the combination of both provide stability (relative)
- Poloidal field coils shape and control plasma

UK Atomic

Map of a Tokamak

×

Power flow in a reactor is

Decay heat Energy Multiplication 579MW 36MW 625MW ^{*Pel*} Electricity Blanket n Neutrons Neutrons 223 Blanket 2929M BoP Fusion Power 2400MW Plasma 1920MW T plant 18MW H&CD power 4W 238MW 422N 50MW Aux r 241MW P oth... Alphas + Aux 103MV H&CD 37MW **BB** Pumping 530MW electrical Radiation and **First Wal** Losses рс 27 167MwLosses Separatrix wer MW 1950MW Cryoplant 34MW **BB** coolant Divertor n Auxiliary 163MW FW Divertor rad and pumping charged p 66MW 238MW 42MW lagnets 52MW Losses Divert@29MW 36MW Div coolant 12MW pumping 12MW Losse 2MW H&CD Power 167MW

X

UK Atomic Energy Authority

11 OFFICIAL

- Lots of forces
 - Magnets push the plasma, plasma push back
 - coil currents upwards of 70 MA
 - Forces upwards of 0.5 GN
 - Cross talk between coils
- High temperature gradients
 - PFC temperature can be upwards of 4000K
 - SC coils 4-40 K
 - Thermal expansion drives stress/strain
- Rapid heat transients in very cold things Non-Fourier hyperbolic heat model

UK Atomic

- Flowing fluids
 - Mostly high pressure water/steam
 - CO₂, He, H, etc
 - Sometimes liquid metal + magnetic
 field → MHD
- Turbulence
 - We have fairly large fluid volumes that split and branch multiple times with fairly high Re numbers
- FSI in divertor & blankets
 - e.g. swirl vanes in divertor cooling channels

XX

 Plasma emits heat in the form of charged particles & radiation (neutrons, x-rays and gamma rays)

- Can be distributed over a larger area
- \circ Or can be concentrated a la divertor \rightarrow 5-20 MW m⁻²
- Can be concentrated even further under off-normal scenarios e.g. runaway electrons
- Radiation loads
 - Plasma releases 80% of the fusion energy as neutrons
 - radiation damage drives another source of stress/load
 - nuclear heating drives another
 - further nuclear reactions increase energy deposition by 50%
 - Don't forget hot stuff radiating heat to colder stuff!
 - Complex transfer of IR from surfaces

- Vacuum → around 100x more dense than lunar atmosphere - 1x10⁻¹¹ bar
- Tritium permeation
 - tritium diffuses through materials easily, driven by temperature gradients, material properties (adsorption rates) really tied to the microstructure
 - tritium prediction is critical
 tritium is
 our fuel accurate predictions are
 critical
- In solid, regular diffusion applies, at escape boundary - monte carlo approach

XX

- Erosion
 - plasma heat (particles) leads to localised melting, field redeposits melt pool material over the first wall
- Divertor constantly exposed to ion flux, leads to tungsten fuzz (if divertor PFC is tungsten)

http://dx.doi.org/10.1016/j.jnucmat.2017.05.032

In terms of whole device simulation we firmly have a multiscale problem

material

.pdf

parameters

Atomic scale microstructure MD

- Investigate role of idealized interfaces
- Determine interfacial properties

- **Mesoscale models**
- Predict and define microstructure evolution
- Determine effect of evolution on material properties

X

UK Atomic Energy Authority

OFFICIAL

nm

μm

m

Length [m]

UK Atomic Energy Authority

STEP

- The Spherical Tokamak for Energy Production (STEP) is an ambitious programme to accelerate the delivery of sustainable fusion energy.
- STEP is a staged programme to design and build the world's first compact fusion reactor, based on the spherical tokamak, by 2040.

Fusion Timelines

- In between now and 2040 there are a number of demonstration type plants coming online
 - ITER
 - SPARC
 - CFETR

OFFICIAL

- Nuclear Test Facilities
 IFMIF
- Non Nuclear Test Facilities
 CHIMERA

2020 2030 2050 2060 2070 2080 2010 -----~ 2056 US-I ----FNSF Tokamak (~24 y) ~ 2055 CDA. EDA. licensing, construction **US DEMO** 1st Power Plant ----US-II ST-I 5T-FNSF (20 y) Construction ~ 2050 US-III (N construction **US DEMO** Tranche **Franche** 1st Power Plant **K-DEMO** 2042 2079 КО (2 phases: 12y, 25y; 600 MW net power in 2nd phase) 1st Power Plant 2060 2050 EU EU DEMO 1st Power Plant (depends on ITER schedule) - -JA JA DEMO tion & Operation ----CH DEMO ~10 y) > 2050 1st Power Plant

Timeline for International Fusion Roadmaps

Operation

2090

From L. El-Guebaly

Fusion Timelines

- In between now and 2040 there will be only 3 years, 2037 onwards of ITER experiment that will have DT neutrons and all remaining loads present
- The Commonwealth Fusion Systems SPARC device might run - will we have access to the data? 10 s pulses?
- Will need to qualify and gain regulatory compliance in absence of all the experimental evidence that may be needed
 - Cross Validation across fields & domains
 - Uncertainty Quantification & Propagation
- Small efficient directed testing will be critical
 21 OFFICIAL

Traditional techniques lack scale

- Sub-modelling techniques limit throughput
 - Manual
 - Built on humans & approximations
- Manual mesh generation
 - Tedious
 - \circ Slow
 - Not parallel
- Commercial solvers tend not to scale well beyond 32 cores
- Need to move the engineer off the desktop

Combine as designed, with as built

 Combine as designed FEA with Image Based Finite Element (IBFEM)

- IBFEM alloy built compo Modelling entire as built or IB components will
 Foute to components with the second s
- route to con validation
 Threaded, GPU accelerated) system for performing
- Combine with Correlation (D

surface and depth characterisation

0.10

II g. MPI,

0.10

0.15

X-Axis

0.20

0.25

Moving towards as designed FEA is

ITER I simplif *PPP* to thread eleme O(10⁹) tets 2nd order mesh 25000 CPUS (25000 MPI) Wall clock time - 400 s (!!!) 1e5 DOF per CPU

<u>C Richardson et al - "Scalable Computation of Thermomechnical Machinery"</u>

FFICIAL

Digital Twins

Figure 1: Image of sample undergoing experiment in HIVE [1]

Figure 2: Heat distribution captured in HIVE using infrared camera [1]

Swansea

University

Prifysgol Abertawe

The HIVE experiment mimics first wall temperatures, driven by inductive heater digital twin & machine

learning driven
25 OFFICIAL

Rh. Lewis^{1,2}, LI.M. Evans^{1,2}, A.D.L. Hancock², A. Davis^{1,2}, R. Otin², K. Flinders², J. Paterson², D. Stone², M. Dearing², H. Lewtas², P. Nithiarasu¹

Large scale multiphysics

- If we are to fully simulate complete systems, need scalable coupled FEA framework, it must cover:
 - Computational Solid Mechanics
 - Including dynamic contact
 - fracture mechanics
 - Computational Chemistry
 - DFT, Damage
 - Computational Electromagnetics
 - Computational Fluid Dynamics
 - Computational Radiation Transport
- Massively scalable
 100,000's of CPUs
- Exascale gazing (considering support for GPU)

• Heat Transfer

- Microstructure (phase field, grains)
- Diffusion (and reaction)

26 OFFICIA

UK Atomic Energy Authority

We are trying to build a performant multiphysics software framework

- We need to perform efficient multiphysics simulations
 - Experimenting with tightly coupled framework rather than federated model
 - This means we take a more *holistic* view of how we stick different codes together
 - It may be the case that taking the best/fastest physics packages and sticking them all together does not lead to the most scalable solution
 - communication of mesh or solutions could begin to dominate
 - for massively decomposed problems (where we need to be for performance)
- Still figuring out what tools, physics, scales

OFFICIAL

Ideal partitioning for a CFD problem

Ideal partitioning for a neutral particle problem

Initial Investigations

- Horizon scanning revealed something like 37 modern FE frameworks which we could base some tools
 - Given our limited programme duration, we choose MOOSE: down se
 - due to its scalability (demonstrated scalability to 100k cores) ease of

Ideal MOOSE

50 ·

DOLFIN

Ideal

10

Number of cores

XX

UK Atomic Energy Authority

60

100

- quite wide ranging physics options software
 - multiscale
- ease of plugging in external physics memory
- Make improvements to physics where needed, but not using any Compariso MOOSE Apps (Falcon, Marmot, etc) -> making our own lead to a fi MFEM \bigcirc Tota commercial Solver 10
 - MOOSE

scaling

Ο

Dolfin (Fenics/Fenics/X)

Initial Investigations

- Looking at the role of turbulence in gas cooled breeding blankets
 - \circ somewhat contrived problem, but reflective of a concept design from KIT
 - 1 MW/m² heat load on front surface
 - 10 MW/m³ nuclear heat load
 - 5 ms⁻¹ helium coolant (ramping flow)

Initial Investigations

• Hypervapotron (heat exchanger) simulations

30 OFFICIAL

Parallel Scaling

- Some physics limits hardware scaling
 - Pre-conditioners
 - very nonlinear physics
 - temperature dependent parameters
 - long grind time
- MOOSE assembly time scales very well
- Mesh partitioning is intelligent factors in BC's, contact
- MOOSE → libMesh → PETSc
- Allows trivial tight coupling
- MultiApp makes federation easier

UK Atomic Energy Authority

Example MOOSE scaling 78M elements 713M DOF https://doi.org/10.1016/j.softx.2020.100430

Challenges

- In-situ visualisation
 - We cannot rely on rsync/ssh/scp to transfer massive outputs for visualisation
 - Exascale problem
- Geometry preparation and meshing
 - Most (all?) parallel meshing systems do not preserve curvature important!
 - All geometry preprocessing is serial with commercial tools

Parallel Preprocessor + Parallel mesher

https://github.com/ukaea/parallel-processor

That being said.....

- There are some really interesting things coming down the academic pipelines
 - Iso Geometric Analysis (IGA)
 - Spectral HP Based FE/FV
- These two combined will (1) simplify the CAE pipeline and (2) massively increase the arithmetic density (high order)
- But....have to be pragmatic
 - we cannot wait for these tools to come on-line, we need to do things now, can phase in newer technology later

Conclusions

- We have short timescales to deliver a working fusion reactor, in order to deliver going to need
 - Performant, scalable multiphysics
 - Uncertainty quantification to allow actionable simulation
 - Digital twins of experiments for validation
- We can't do it alone, we can be the keepers of our domain knowledge
 - \circ $\,$ We need your help
 - We need your use cases too, every experiment is critical

Questions

