

Economies of Scale v Economies of Volume – LWRs

Nuclear Institute - SMR Conference

Tony Roulstone, Zhenjun Guan

September 2014

Conventional View of the Cost Problem

- Specific costs fall with increasing unit size;
- First of class has additional one-off costs of ~20%
- Predicted unit scaling index range varies with commodity: -0.8 structures, to -0.2 turbines;
- Some cost savings for twin over single units but afterwards savings are small;
- Standardisation and shorter construction timescale are the best ways of reducing capital costs;
- SMRs will have a big economic hill to climb.

Scaling: Forecasts meet Reality - France

• Cost forecasts based on power scaling effect are unsupported by the data for France.

Forecast Scaling Effect - France

OECD-NEA Reduction of Capital Costs in NPP 2000 [2]

French Data - Specific Construction Costs €/kWe 2010

Cour de Compte (2012) [13]

Costing Methodology

Specific Cost/Specific Cost₀=(Power/Power₀)^a*(y)^b

Scaling + Learning + Regulation

Specific Cost:

a = 0 no scaling

a <0 scaling effects:

a is often taken to be in range -0.5 to -0.35

Wright Progress index [8]

y% man-time saving for *b* doublings of unit/volume, *y* in the range 70-100%

where b = Ln(n)/Ln(2) for *n* units

Nuclear Industry: Learning rate (1-y) = 3-5%

Power Scaling Indices Power scale index = Specific power index +1

- Major power scaling survey used by Carelli [3] SMR study from Bowers 1983 [4] covering 1968-1982;
- OECD/NEA 2000 [2] based on Woite 1978 [3]

Whole plant scale index: 0.4-0.7, with subsystems indices:

Typical scaling factors					
Package	Scaling factor (<i>n</i>)				
Structures	0.2				
NSSS	0.3				
BOP	0.4				
Turbine plant	0.75				
Electric plant	0.37				
Miscellaneous	0.2				

- Similar figures in OECD/NEA SMR study 2011 [5]
- Scale indices based on:
 - Part of the program,
 - o estimates and actual
 - Build duration independence fallacy.

Author	Year	Scale	Note
	. cui	exponent n	
-1	1968	0.75	LWR total cost
-1	1968	0.51	Total cost
McNelly and	1969	0.64	Total cost
Koke			
Bennett	1971	0.68	Total cost
Bowers			
leedy and	1973	0.4	LWR direct Cost
Scott			
Davis	1975	0.47	BWR total cost
Mandel	1976	0.46	LWR total Cost
Woite	1976	0.71	Direct and indirect costs
Comtois	1977	0.86	LWR total costs
	1977	0.76	LWR total costs
Mooz,	1978	0.8 / 0.5 /	LWR regression analysis of historical data;
Rand		0.7	marginal statistical significance. Different
			assumptions
Mooz,	1979	1	LWR regression analysis of historical
Rand			nuclear plants; no statistical-significant
Considers	1070	0.45	economies of scale was found Direct and indirect costs
Litowiey	1978	0.45	Direct and indirect costs
Cebring	1979	0.4	IWP direct and indirect costs
Jenning	1979	0.49	Total costs. It was used CONCEPT CODE 5
Fieldsted	1980	0.59	Total costs: source: FS_Aschenr Planning
Jelusteu	1500	0.00	Fundamentals of Thermal Power Plants
			John Wiley and Sons, New York (1978)
			Include allowance for escalation and
			interest during construction
McMahon	1980	0.43	Direct and indirect costs
Nieves et al.,	1980	0.25	Regression analysis of historical data;
Battelle			direct
			and indirect costs and constant dollar
			interest during construction. For nuclear
			units Komanoff found a 13% cost
			reduction
			in €/kW(e) for doubled size
Komanoff	1981	0.8	Regression analysis of historical data;
			direct
			and indirect costs
McMahon	1981	0.43	Total costs; 0.92 for 100-600-MW(e)
	1001	~ .	oil fired units
crowley	1981	0.4	Direct costs
Nobile and	1982	0.63	Regression analysis of historical data;
Kettler			and indirect costs and constant dollar
			interest during construction
	1982	0.53	IWR Direct and indirect costs
	1982	0.63	IWR Engineering cost estimates
Perl	1982	0.49	Regression analysis of historical data

SMR Economics – Cost Data Analyses

Country (plants)	Sp. Power	Learning	Comment	Reference		
US (67)	0.14	3-5% Extended build duration of larger units absorbs any scale savings. Learning offset by regulatory changes. FOAK +20%		Cantor & Hewlett 1988 [11] U of Chicago 2004 [12]		
France (58)	0.15	0-10%	Extended build duration larger units absorbs any scale savings. Onsite learning high 10% but programme effects offset by regulatory changes	Cour de Compte [13] Rangel & Levesque [14]		
Japan (34)	0.07	as US above	Better correlation with total cost than overnight – learning derived statistically –.fit data. FOAK +20%	Marshall & Navarro [15]		
UK Magnox (8)	-0.14	~5%	Some scale & learning – AGRs little of either!	Hunt [16]		
S Korea (12)	0	5%	OPR 1000 benefited from strong drive for learning. No scale effect is evident.	Adjusted published KEPCO data - APR1400 estimates as not complete.		
Canada (12)	0	0%	No consistent power scaling or learning effects evident.	Thomas [17]		

7

Expert Estimates of SMR costs

- Group of 23 separate industry estimated cost of large LWR (1000MW), single and multiple NuScale (45MW) and mPower (225MW) systems

 Abdulla [1]
- Clear consensus that SMRs would be quicker to build 33-37 versus 58 months;
- SMR cost estimates have a wide range, with large uncertainties but give an impression

Break-even Volumes (Reactor Units)

SMRs can be cost competitive

200MW							100MW						
Sp. Power	-0.35	-0.3	-0.25	-0.2	-0.15	-0.1	Sp. Power	-0.35	-0.3	-0.25	-0.2	-0.15	-0.1
Learning							Learning						
3%	>500	>500	>500	>500	>500	>500	3%	>500	>500	>500	>500	>500	>500
4%	>500	>500	>500	>569	>500	3	4%	>500	>500	>500	>500	>500	3
5%	>500	>500	>500	>500	32	2	5%	>500	>500	>500	>500	>500	2
6%	>500	>500	>500	95	10	2	6%	>500	>500	>500	>500	77	2
7%	>500	>500	218	27	6	2	7%	>500	>500	>500	>500	23	3
8%	>500	>500	63	13	4	2	8%	>500	>500	>500	121	12	3
9%	>500	146	29	9	3	2	9%	>500	>500	>500	48	8	2
10%	445	62	17	6	3	2	10%	>500	>500	262	25	6	2

- SMRs will have higher costs if power scaling is important and learning rates are low;
- SMRs can be cost effective for specific scale indices ~-0.2 and learning rates > 6%;
- Number of units to become competitive v LR in relative small ~3-50 (6-10GW) for 200MW unit;
- 100MW unit reactor size has a narrower feasible range than 200MW unit size.

Modelled values:

- Comparison between LR 1000MW with SMR 100/200MW unit size;
- Reactor costs split 50/50 labour & materials, Materials learning rate 2% applied to all cases;
- LR comparator with overall learning rate of 3%, including 2% for materials;
- Project interest rate 8% for construction periods assumed: SMR: 36 months, LR: 60 months.

Break-even Volumes (GWs)

	Specific Power Scale	Overall Learning	Break-Even	Comment
Conventional assumptions	-0.35	3%	>100GW	Not economically feasible
Low power scaling & Learning	-0.2	3%	>100GW	Ditto
Low power scaling , Mid Learning	-0.2	7.5%	2.8GW for 200MW 15GW for 100MW	Significant contribution of lower construction interest for viability
Low power scaling, High Learning	-0.2	10%	1GW for both 100 & 200MW	Very competitive costs – unit size: determined by supply chain needs.
				Potential of designed for manufacture reactor system

Conditions for Cost Competitive SMRs

Scaling:

- Simplify the design, less components, less systems;
- Operate within current LWR & steam technology understanding, not at the edge;
- Design plant for manufacture, not construction: whole plant and systems, not just the reactor vessels and components.
- One design that can accommodate most of world's requirements a global standard 50/60 Hz
- Alignment of design certification standards, with a level stability of regulation.

Learning:

- Design for factory manufacture and site assembly whole plant and all systems;
- Detailed design for manufacture done with global suppliers/partners;
- Manufacturing engineering, jigs, tools and fixtures as part of development;
- Launch and forward order profile that support a minimum supply chain 'drum beat';
- Global supply chain that ensures 'learning by doing' 10 per year minimum?

Are these the skills of low volume manufacturing rather than construction?

ACP100

References

- 1. Abdullah et al. Expert assessment of the cost of LWR SMR. Carnegie Mellon, PNAS 2013
- 2. OECD Reduction in capital costs of nuclear power plants 2000
- 3. Carelli MD. Economic features of integral, modular, small to medium-sized reactors. Progress in Nuclear Energy 52 (2010) 403-414.
- 4. Bowers H I et al. Trends in nuclear power plant capital investment costs, A2 Summary of literature review. ORNL/TM 8898.1983
- 5. Woite G Capital Investment Cost of NPPs. IAEA Bulletin, vol. 20, No.1 February 1978
- 6. OECD/NEA. Kuznetsov & Lokhov. Current status, technical feasibility and economics of Small Nuclear Reactors June 2011
- 7. Ramana MV. Nuclear Power; Economics, Safety & Environment Issues of Near-term Technologies. Annual Rev Env Resource 34, 127-152 2009
- 8. Mooz WE. Cost Analysis of LWR power plants in US. DoE R-2304 1978
- 9. Goldberg & Touw. Statistical methods for learning curves & cost analysis. CIM D0006870.A3 2003
- 10. Grubler A. The cost of nuclear scale-up: a case of negative learning by doing. Energy Policy 38(2010) 5174-5188

References

- 11. Cantor & Hewlett. Economics of Nuclear. Power Resources & Energy. 10 315-335 NH 1988
- 12. University of Chicago. Economic Future of Nuclear Power. Chap pg. 4-24 August 2004
- 13. The cost of the nuclear power sector. Cour de Compte Jan 2012 pg. 22-23
- 14. Rangel & Levesque. Revisiting the cost escalation curse of Nuclear Power French Exp. 2012
- 15. Marshall & Navarro. Cost of nuclear power construction New evidence from Japan. RAND Journal Economics Vol. 22-1 1991
- 16. Hunt SE. Fission, Fusion and The Energy. Fig 29 & Pg. 72 Elsevier 1980
- 17. Thomas SD. The realities of Nuclear Power. Pg. 185 Cambridge 1988 McKerron G. Nuclear Costs Why do they keep rising? Energy Policy July 1992
- 18. Goldberg & Rosner, SMR Key to Future of Nuclear Generation in US. U of Chicago. EPIC 2011
- 19. Chen & Goldberg. Small Modular Nuclear Reactors: Parametric Modelling of Integrated RV Manufacture. Detailed Analysis Vol. 2 ANL 2013.
- 20. McDonald & Schrattenholzer. Learning rates for energy technologies. En Policy 29 255-261 2001

